

Contents

	NC3200 Turning Inserts (NC3205, NC3215, NC3225, NC3235)
	NC5320
	UNC805/UNC840, UPC810/UPC845
	PC3035
	PC3700
	PC5535
	PC9035
	PC9540
	CC1015/CC1025
_	— Turning
	Hexa Blade
	Saw Man-X
	— Milling
	RM6
	RM8-X
	RM14
	RMR
	Alpha Mill-X
	Triple Mill
	HFMD

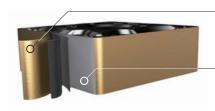
Drills

KING Drill	22
TPDB Plus Drill	
TPDC Plus Drill	24

Endmills

The Mirror Endn	nill (PCD Endmill, cBN Endmill, H-Star Endmill)	2
Super Endmill _		<u>_</u> 2
H-Star Endmill		
U-Star Endmill		:
S-Star Endmill		:
G-Star Endmill		
A-Star Endmill		;

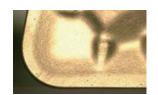
NC3200 Turning Inserts NC3205, NC3215, NC3225, NC3235


CVD insert series for Steel Turning

- · Applied the New CVD coating increasing productivity and stable tool life
- Applied optimal substrate in cutting range (P05, P15, P25, P35)

(Features)

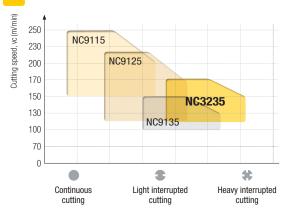
New CVD coating and substrate increasing stability


→ CVD coating with increased wear resistance and chipping resistance

- Ensured stable tool life due to increased wear resistance, chipping resistance and heat resistance
- High toughness and heat resistance substrate
- Exclusive substrate per each grade increasing tool life

· Highly lubricative coating with fine surface finish application





[Existing grade]

(Application range)

M Stainless steel

NC3205

- High cutting performance in high speed and continuous cutting
- Good wear resistance

NON T

NC3215

- High cutting performance in medium to high speed and light interrupted cutting
- Good wear resistance and heat resistance

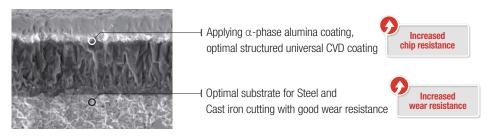
NC3225

- High cutting performance in medium speed and medium interrupted cutting
- 1st recommended grade

NC3235 |-

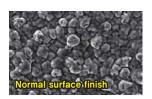
- High cutting performance in medium to low speed and heavy interrupted cutting
- Good chipping resistance and fracture resistance

NC5320


Universal insert for Steel and Cast iron cutting

- Applying exclusive substrate for Steel and Cast iron and New CVD coating with great wear resistance
- Applying New CVD coating technology with better BUE resistance and chipping resistance than existing grades

(Features)

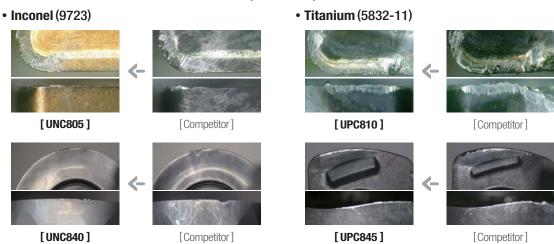

• New CVD coating with increased wear resistance and chipping resistance

• Increased surface finish due to applying New CVD coating

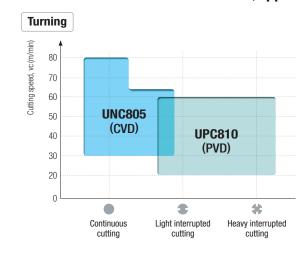
[NC5320]

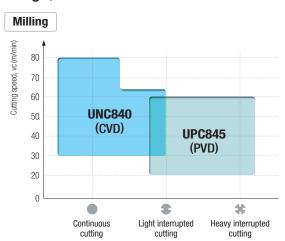
[Existing grade]

(Application range) Steel Cast iron Cutting speed, vc (m/min) Cutting speed, vc (m/min) 325 400 300 NC6315 NC3215 275 350 300 250 NC5320 225 250 NC5320 200 200 NC3225 175 150 NC5330 NC5330 100 150 50 125 Continuous Light interrupted Heavy interrupted Continuous Light interrupted Heavy interrupted cutting cutting cutting cutting cutting cutting


UNC805/UNC840 UPC810/UPC840

High performance Ultra Coating grade series for machining of HRSA


- Enhanced substrate in order to minimize thermal crack resistance at high temperature and prevent unexpected tool breakage
- Increased chip removal volume thanks to Ultra Coating technology with high hardness and lubrication
- · Minimized built-up edge due to the optimized cutting edge of the insert



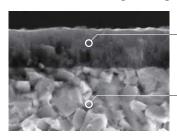
(Features)

(Application range)

UNC805 (CVD Turning)	UN840 (CVD Milling)	UPC810 (PVD Turning)	UPC845 (PVD Milling)

- Good performance in high speed machining
- For high speed and low feed machining
- For forged workpiece
- For high hardness (HRC35 or above) HRSA
- For large-sized workpiece (Ø200 or above)

- Good performance in low speed and high feed machining
- For high interrupted cutting conditions
- For cast and round bar machining
- For low hardness (under HRC35) HRSA
- For workpiece (under Ø200)

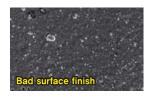

Inserts for Steel Grooving and Parting

- Suitable substrate for Steel Grooving and Parting and good wear resistance coating layer
- Application of coating surface treatment improving welding resistance and chipping resistance

(Features)

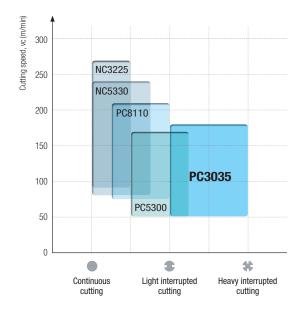
• Substrate for steel grooving and parting and PVD coating technology

 Enhanced wear resistance by high hardness TiAIN coating layer



Application of high toughness substrate technique which is optimized for steel machining

Coating surface treatment technology

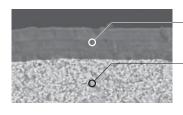


[PC3035]

[Existing grade]

(Application range)

Application range	Grade	vc (m/min)
Continuous, high speed	NC3225	90 ~ 270
Continuous, medium speed	NC5330	80 ~ 240
Low interrupted, medium speed	PC8110	75 ~ 210
Low interrupted, low speed	PC5300	50~170
Interrupted, medium speed	PC3035	50~180


Milling grade specialized for Steel

- Excellent chip removal rate due to a tough substrate specialized for Steel, and lubricative PVD coating of high-hardness
- A highly chipping-resistant grade for minimized deviation and extended tool life under various cutting conditions

(Features)

Substrate for general Milling applications of Steel and PVD coating treatment

- Stronger resistance to welding and chipping due to the multi-layer coating technology with high hardness and lubricating treatment
- 4 Ensuring general machinability due to wear and breakage resistant materials optimized for milling applications of Steel

Smooth surface due to special surface treatment

→ Smooth chip evacuation, improved chipping resistance and surface finish of the workpiece

Special coating surface treatment }

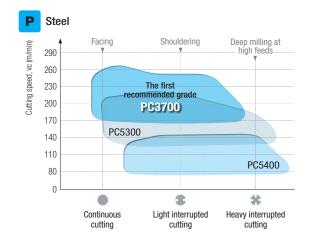
No macro-particle on the coated surface

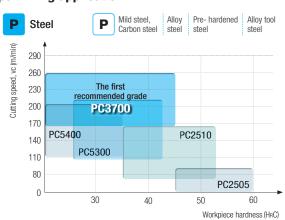
[Existing products]

Lots of macro-particles on the coated surface

[PC3700]

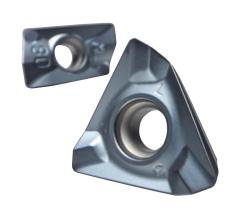
Stronger resistance to welding and chipping due to the multi-layer coating technology with high hardness and lubricating treatment

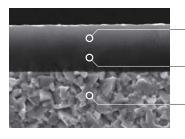

Less unexpected breakage



Ensuring general machinability due to wear and breakage resistant materials optimized for milling applications of Steel

(Application range)


• Recommended grades and cutting conditions for p-type Milling application


PVD insert for general Milling

- · General use due to high toughness substrate with balance of wear resistance and toughness
- Maximized tool life by applying the omega tech overcoming primary troubles in Milling
- Achieved stable cutting by implementing Edge tech and preventing welding, chipping and unexpected fracture

(Features)

Omega-Tech™ - applying PVD fusion coating technology

- Maximized coating performance by applying exclusive PVD fusion coating technology
- Increased adherence between substrate and coating layer with the application of newly designed layer
- Fine substrate with balance of wear resistance and toughness

Edge-Tech™ - applying high lubricated edge technology

[Competitor]

Edge technology }

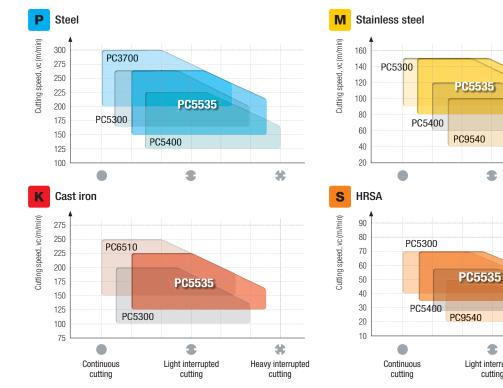
- Preventing welding, chipping and unexpected fracture

1

3

Light interrupted

cutting

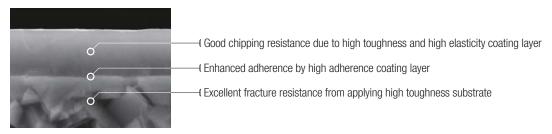

32

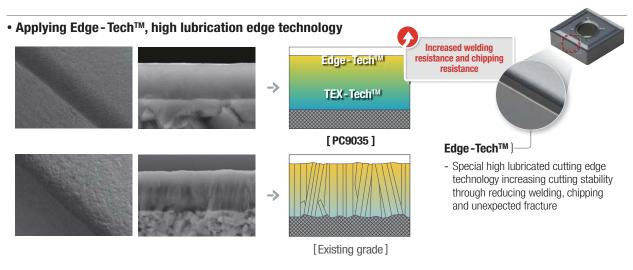
4 Heavy interrupted

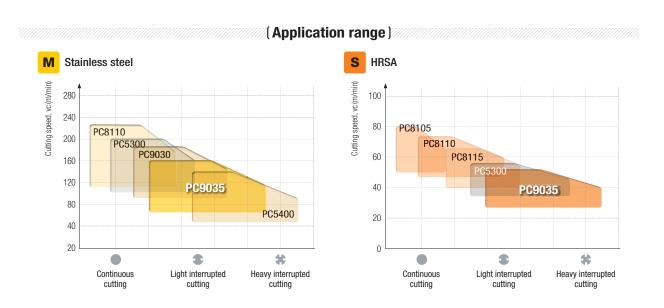
cuttina

- Longer tool life and stable cutting

(Application range)

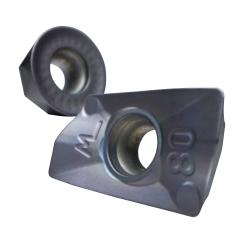

Stainless steel Turning insert

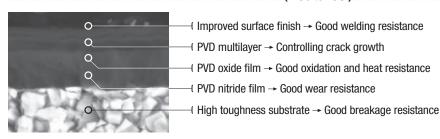

- Optimally designed PVD grade for medium to finish cutting and interrupted cutting of Stainless steel turning
- High stability of cutting due to applying high toughness PVD coating layer technology with chipping resistance and fracture resistance
- Good chipping resistance and welding resistance in the beginning of cutting through the Edge-TechTM technology



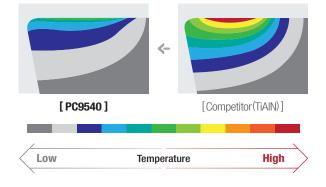
(Features)

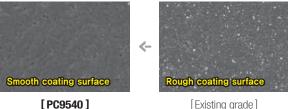
Applying TEX-Tech™, high toughness PVD coating layer technology



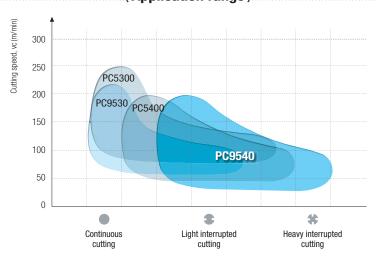


Insert for Hard-to-cut Stainless steel Milling


- Longer tool life due to higher breakage resistance applying high toughness substrate controlling crack growth
- Excellent and new PVD oxide film with oxidation and heat resistance overcoming the limit of hard-to-cut materials machining
- Stable machinability by preventing welding and chipping due to applying special coating surface treatment


(Features)

• New PVD oxide film (comparison of thermal conductivity)

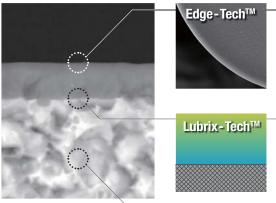


Special coating surface treatment technology

[Existing grade]

(Application range)

CC1015/CC1025


PVD Cermet for Steel Turning

- Ensured stable tool life from applying Lubrix-TechTM (high hardness and lubrication PVD coating technology) for increasing flank wear resistance on nose radius
- Smooth cutting surface from applying Edge-Tech™
 (high lubrication cutting edge treatment technology) to prevent welding and chipping

(Features)

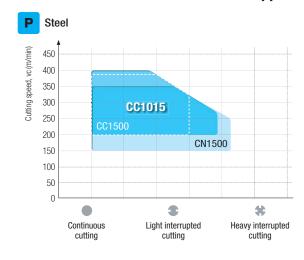
Applying exclusive PVD Lubrix-Tech™ and Edge-Tech™ technology

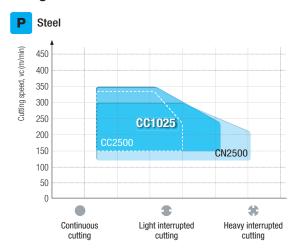
— Edge-Tech™

- High lubrication cutting edge treatment technology
- Reducing welding, chipping and unexpected fracture and increasing tool life and stability

-{ Lubrix-Tech™

- AlCrN series high hardness lubrication coating technology
- Coating layer's growth direction controlling technology


Inclination functional substrate


Surface Inside High wear Good chipping resistance resistance Thermal crack resistance

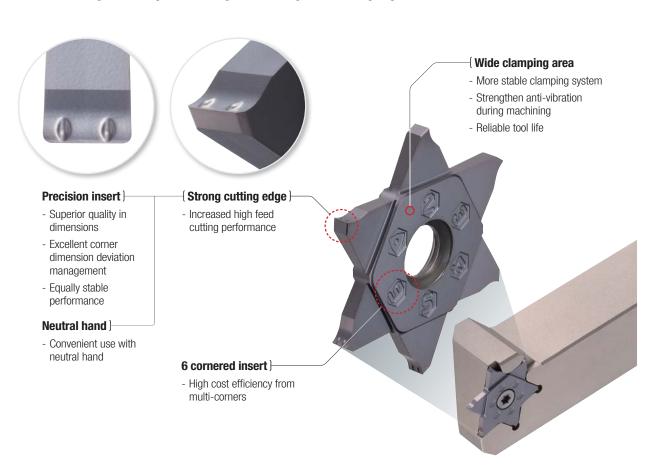
- Inclination functional layer creation with the surface and internal composition's microstructure control
- High chipping resistance and stable tool life

Hardness rate comparison chart 120 CC1015/CC1025 Conventional grade 0 0.1 0.2 0.3 0.4 Distance from the pellet surface (mm)

(Application range)

Hexa Blade

Grooving and Parting tool with precision 6 corners


- · Grooving and Parting tool with high economical 6 corners
- · Increased reliability and stability in cutting due to high qualified cutting edge

(Features)

• M Chip breaker

- Dot-typed chip breaker general cutting for various workpieces
- Good chip control preventing long chip and chip curling
- Stable cutting even in high feed cutting due to strengthened cutting edge structure

→ Type

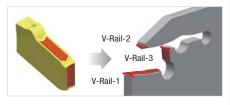
Insert

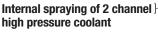
Cutting width: $1.78 \sim 4 \, mm$

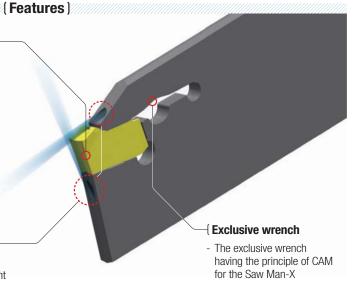
Shank

Diameter: 20, 25 mm

Saw Man-X


A solution for Parting and deep Grooving


- Stable machining in deep grooving applying clamping system with strong three-way V-Rail
- Improving clamping precision and convenient replacing of inserts with using the exclusive wrench


Three-way V-Rail

- Tightly clamped inset in the tip seat
- Increased stability by minimized vibration during the machining
- Available for stable high speed, high feed and high depth of cut machining

- Direct spraying of cutting edge coolant for effective coolant
- Longer tool life in HRSA cutting (*need for exclusive blade and block for high pressure coolant)

- More convenient clamping system

Chip breaker fo	eatures
-----------------	---------

Туре	Shape	Cutting edge	Features
N Chip breaker		110	1st recommended in Steel and Cast iron cutting Negative land cutting edge For interrupted and high feed cutting
S Chip breaker		11°	1st recommended in Stainless steel and HRSA cutting Sharp cutting edge For high speed and continuous cutting
N Chip breaker (Lead angle type)		110	Optimal for pipe and round bar cutting Negative land cutting edge applying lead angle Minimized burr and size of PIP

Insert Cutting width: 2, 3, 4, 5, 6 mm

Blade Blade hight: 26, 32 mm

Blade [High pressure coolant] Blade hight: 26 mm

Shank Shnak hight: 16, 20, 25

Block Block hight: 26, 32 mm high pressure coolant Block Block hight: 26 mm

RM₆

Double-Sided 6-Corner Shoulder Milling Tool

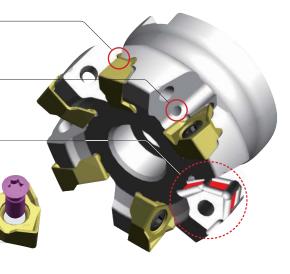
- 3 clamping surfaces on the side and strong clamping screws
- High precision, excellent perpendicularity, outstanding surface finish on the flank, accurate tolerance
- · High rake angle and sharp cutting edges for lower cutting resistance

(Features)

Streamlined holder design)

- Improved chip evacuation in deep shouldering and slotting

Through coolant system >


- Improved chip flow and tool life thanks to insert cooling

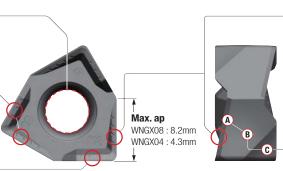
3-side supporting system }

- Stable tool life

Strong clamping screws

- Strong clamping screws enable rigid clamping

Higher clamping stability)


- Wide clamping areas and strong clamping screws for rigid clamping

High rake angle } chip breaker

- Maintains stable clamping
- Induces smooth chip flow → Increases insert

Wide minor cutting edges }

- Improved surface finish
- Enable multi purpose machining incl. plunging

High rake angle cutting edges

 Improved machinability and reduces cutting resistance

3-level flank relief surface

- Enhances rigidity and enables stable clamping
→ Improves cutting stability

Cutter Ø40 ~ Ø125

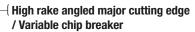
Shank Ø20 ~ Ø50

RM8-X

High helix face Milling tool with 8 cornered double-side inserts

- · High performance in Stainless steel machining due to sharp cutting edge and double reverse positive relief surface structure
- Economic tool by double-sided 8 corners and high helix right-handed shape realizing high depth of cut machining

(Insert features)



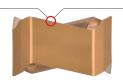
(High Helix)-

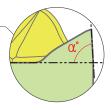
- Improved surface finish
- Reduced cutting loa

(Variable minor cutting edge chip breaker

- Protects its corner on the opposite side
- Enhanced chip control

- Maintain its machinability in high depth of cut
- Enhanced chip control

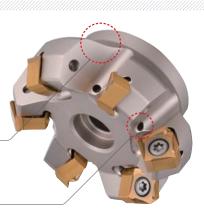




Reversal positive relief angle at the Major cutting edge

- Protects its corner on the opposite side
- Increased chipping resistance and prevents unexpected breakage

(Cutter features)


Internal coolant system >

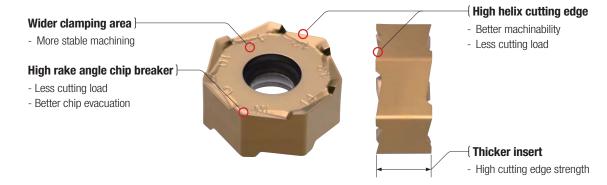
- Improved chip evacuation
- Tool life increase with the inserts' cooling

Steamlined cutter design }

- Improved chip evacuation

Cutter Ø50 ~ Ø125

RM14


Heptagonal face Mill with 14 double-sided corners

- Minimized chattering of workpiece due to maximum lead angle and sharp cutting edge
- Reduced cutting resistance and improved chip emissions by high helix angle application

(Insert features)

- Wide supporting area of insert ensures stable clamping system.
- High rake angle cutting edge reduces cutting load and increases chip evacuation.
- Thicker insert realizes stability in machining.

(Cutter features)

- The biggest heptagonal lead angle reduces chatter in machining.
- · Wedge type clamping system ensures stable clamping.
- Stepped machining is available without interruption of side wall of insert.

The biggest heptagonal) lead angle

 Reduced workpiece chattering by reducing axial force

Preventing interruption) of side wall

 Prevented interruption of side wall by using the most number of corners in deep facing (heptagonal 14 double-sided corners)

Internal coolant system

- Improved chip evacuation
- Increased tool life due to cooling insert

Wedge clamping system

- Stable clamping system with an acute angle structure

Cutter Ø50 ~ Ø160

RMR

Double-sided round Milling tool with 8 corners

- · Improved machining stability with the combination of the reversal positive structure preventing rotation and wide upper and lower clamping sides.
- · Helix cutting edge and sharp chip breaker realize smooth cutting.
- · Wide minor cutting edge and optimized holder angle enhance high surface finish.

(Insert features)

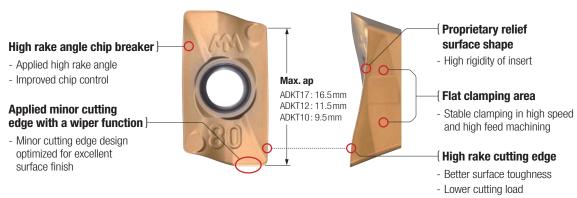
- · High cost efficiency Maximum 8 corners are usable due to applying doublesided structure
- Good surface finish The optimal minor cutting edge ensures good surface finish
- Stable tool life The exclusive structure preventing rotation ensures stable machining

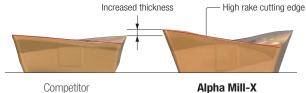
- Good surface finish

- Good machinability with high depth of cut
- Improved chip control

(Cutter features) Internal coolant system | - Longer tool life due to insert cooling

Cutter Ø50 ~ Ø125


Alpha Mill-X


Shoulder Milling tool for high helix

- High helix cutting edge realizes high speed and high feed machining (15% higher speed than conventional tool's machining) and increases 20% higher productivity.
- Highly precise cutting edge ensures high quality surface finish in Milling.

(Insert features)

- Applying cutting edge with high rake angle: decreased cutting load
- Thicker insert: high rigidity of insert
- → Optimal for high speed and high feed machining

(Cutter features)

(ADKT170608PESR-MM)

(APMT1604PDSR-MM)

High rake angle cutting edge

- Improved surface finish
- Decreased cutting load

Perfect perpendicularity

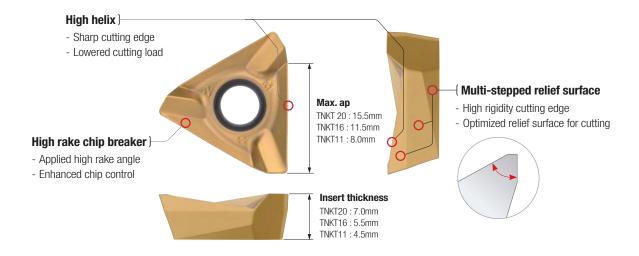
Wider chip pocket }

- Maximized chip control
- Outstanding chip control in high speed and high feed machining

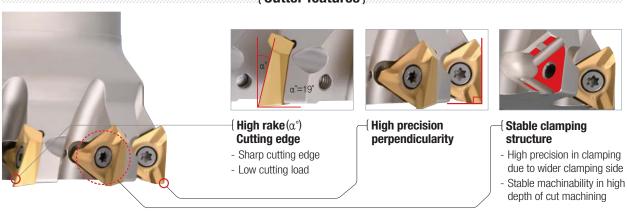
Cutter Ø40 ~ Ø125

Shank Ø16 ~ Ø40

Triple Mill


High depth of cut Milling tool with 3 corners for perpendicularity

- · Economical Milling tool with 3 corners with positive cutting edge for high depth of cut machining
- Stable machinability in high feed machining due to enhanced chip evacuation and thicker insert
- High precision machining from less cutting load due to high helix and sharp cutting edge



(Insert features)

- Economical insert with 3 corners due to high depth of cut cutting edge
- · Lowered cutting load and enhanced chip evacuation by sharp chip breaker and high helix cutting edge
- Stable machinability even in high cutting conditions from high rigidity design

HFMD

High feed Milling tool with 4 corners for small diameter

- Available for economical and highly efficient machining with implementation of double sided 4 corner inserts and increase in the number of teeth per cutter diameter
- Available for high speed/high feed machining with high helix edge design and excellent clamping stability

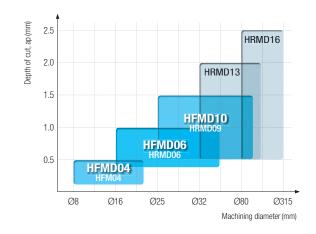
(Insert features)

· Available for high feed machining with the increase in the number of teeth per cutter diameter

• Excellent chip evacuation in slotting or deep shouldering with minimized interference with side walls

Highly efficient insert due to fine pitch |-

 Able to use fine pitch at the same machining diameter with typical types of milling cutters due to smaller inscribed circle (A < B)



- Can use 4 corners with 1 insert by utilizing front/ back face; High feed due to finer pitch

(Application range)

Cutter Ø32 ~ Ø100

Shank Ø8 ~ Ø42

Modular Ø10 ~ Ø42

KING Drill

Optimized insert design for maximum Drilling efficiency

- · Optimized design of inserts for maximum Drilling efficiency
- Excellent cutting performance and chip control due to the optimized geometry and chip breaker of both inserts, central & peripheral
- · 2 different inserts, optimized for the central and peripheral insert locations in order to maximize cutting tool life

(Features)

· Optimized flute system - 2 coolant holes applied

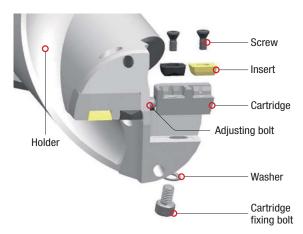
The optimized shape of the flute increases the rigidity of the Drill body and improves chip evacuation

KING Drill

For through coolant system with a lathe

Drill with through coolant system for general lathe and CNC lathe without through coolant system

- · Through coolant system with Drill holder, plug, oil-hole hose and oil-hole pump
- PT Tap in the plug is combined to PT Tap connected to oil hose.
- · Available to use the Drill without a plug in Milling machine


M X p Holder Plug · Clamping oil hose to the bottom of plug and connect the oil pump to the holder Oil pump

KING Drill

For large diameter Drilling

High rigidity drill produces cost efficiency due to cartridge replacement

- Cartridge type for Ø61~Ø100 Drilling
- · Peripheral cartridge can adjust the Drilling diameter
- · Easy to adjust Drilling diameter with adjusting bolt

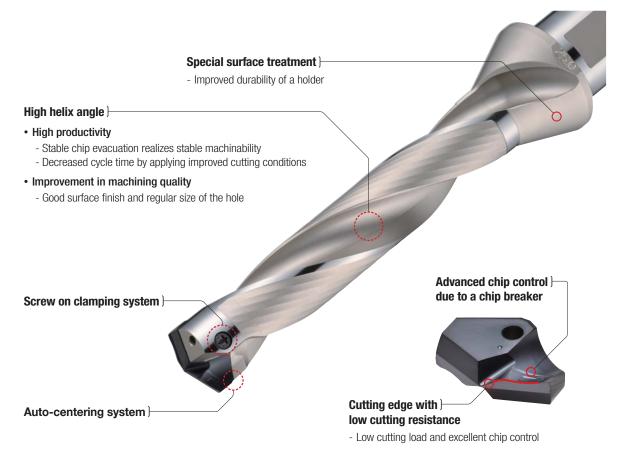
KING Drill [2D/3D/4D/5D] Ø12.0 ~ Ø60.5

KING Drill (For through coolant system with a lathe) [2D/3D/4D] Ø13.0 ~ Ø29.5

KING Drill (For large diameter Drilling) [2D, 3D, 4D] Ø61.0 ~ Ø100

TPDB Plus Drill

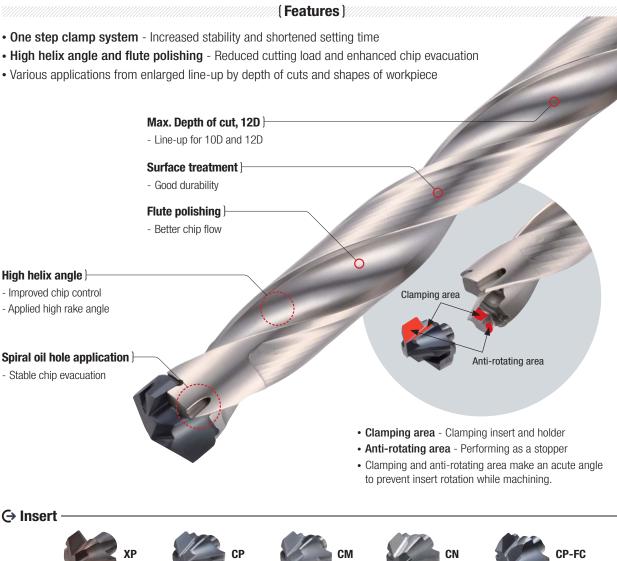
(TPDB Plus/TPDB-DS/TPDB-F/TPDB-H)

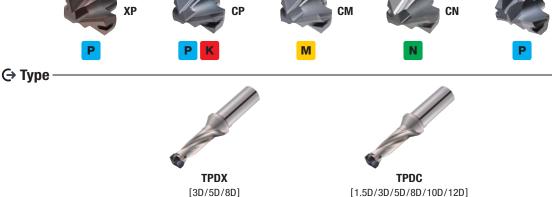

High-quality and high efficiency top solid indexable Drill

- Improved productivity and excellent machining quality through stable machining
- Versatility in machining various surfaces, structural Steel, and medium / large diameter machining

(Features)

- Highly precise clamping system Superior clamping precision with auto-centering system and highly precise grinding clamping parts
- Screw on clamping system Easy to replace inserts
- Sharp cutting edge Low cutting load and good chip control
- Holder with excellent durability Holder with high rigidity and excellent wear resistance due to special surface treatment
- · Holder with excellent chip control Low cutting resistance and outstanding chip evaluation by applying high helix angle


TPDC Plus Drill


(TPDC-XP, CP, CM, CN, CP-FC)

High quality and high feed top solid indexable Drill

- · The optimal tool shape for Drilling realizing high precision and high feed machining as of carbide solid Drill performance level
- Usable for various machining through enlarged line-up by workpieces, depth of cuts and workpiece shapes

Ø12.0 ~ Ø30.9

Ø8.0 ~ Ø11.9

The Mirror Endmill

High precision mold manufacture solution

- For medium cutting of high precision workpiece and mold machining above HRC60
- Enhanced wear resistance from applying the optimal grade for PCD, cBN

(Features)

PCD Endmill

For polishing of high precision workpiece and high hardness mold

- · Optimal surface finish by PCD ball Endmill with no edge
- Nano-level surface finish due to its ultra-fine Endmill
- Enhanced wear resistance from applying the optimal grade for PCD

cBN Endmill

For ultra-fine and mirror-like workpiece and mold with over HrC60 machining

- Higher productivity and surface finish in high speed cutting
- Enhanced wear resistance due to the optimal cBN grade
- · Longer tool life by shape with strong cutting edge
- Stable tool life and surface from high precision Endmill

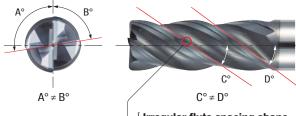
H-Star Endmill

Proper for the various cutting processes with long neck, rib and taper neck etc

- Stronger cutting edge strength of the tool applied ultra-fine substrate
- Enhanced high temperature heat resistance by applying new coating layer on the edge in high speed cutting
- Stable cutting performance due to the optimal cutting edge for high speed machining

Ball Ball Radius Long neck ball ∅0.3 ~ ∅2.0 ∅0.4 ~ ∅2.0 ∅0.4 ~ ∅2.0 ∅0.1 ~ ∅5.0

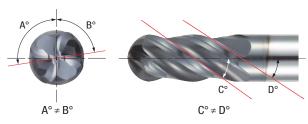
Endmills series for Difficult-to-cut materials (Ti and HRSA)

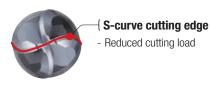

- Machining HRSA and Ti components like engine, turbine and etc. used in aerospace and power generation industries
- Optimal for difficult-to-cut materials machining due to reduced cutting heat and enhanced chip evacuation

(Features)

Super Endmill for Ti

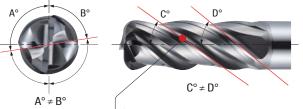
· SFET (Flat) / SRET (Radius)

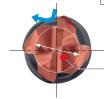

Irregular flute spacing shape - Reduced chattering and vibration



Large chip pocket and streamlined flute design

- Good chip evacuation


· SBET (Ball)



Super Endmill for HRSA

· SRES4000 (Radius)

Irregular flute spacing shape - Reduced chattering and vibration

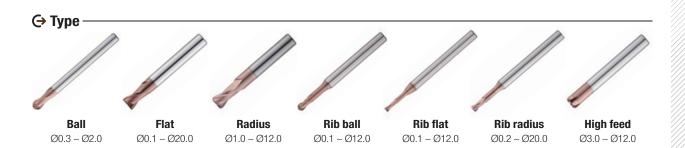
High rigidity core web design

- Enhancing cutting stability and chip evacuation

• SFES4000 (Flat)

H-Star Endmill

Endmill for High hardness Steel cutting


- Stable cutting from High hardness substrate and exclusive new coating layer with good wear resistance application
- Improved initial chipping resistance with optimized edge treatment for high hardness Steel cutting

(Features)

- **High hardness coating layer** Ensuring stable cutting from high Si content, increased wear resistance and frictional heat resistance due to applying a new AITiSiN series coating layer
- **High hardness substrate** Containing ultra-fine WC + Co 9% and expanded general application range by maximizing cutting edge feature



U-Star Endmill

General use Endmill for Medium hardness and Alloy steel cutting

- · Wide line-ups for cutting various and complicated shaped workpieces
- Long tool life due to new coating and optimal substrate for cutting

(Features)

- Carbide Endmill for HRC30~50 medium hardness steel and die Steel cutting
- Enhanced wear resistance, anti-oxidation and lubrication by applying AlCrN series coating layer
- Enhanced cutting edge strength of ball Endmill applying ultra-fine substrate (PC303W)
- Higher chipping resistance of flat Endmill applying high toughness substrate (PC315W)
- · Various shaped line-ups for complicated mold machining
- Suitable for precision cutting with high precision tolerance of h5 shank, flute and radius

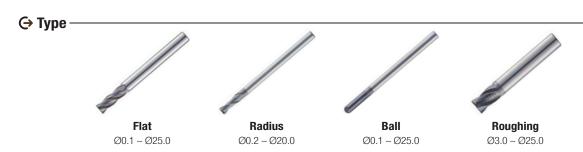
Applying substrate for medium > hardness Steel cutting

- Separating the substrate (PC303W and PC315W) maximizes the features of tool and ensures general use.

Applying S-curved gash shape }

- Increased cutting performance and wear resistance due to dispersing cutting force

Edge treatment }


- Enhanced chipping resistance in the beginning of cutting
- Guiding stable cutting for managing the properties of mold machining

AICrN base new coating }

- Increased wear resistance and oxidation resistance by multi layer
- Enhanced lubrication with Cr containing
- Stable cutting under frictional heat

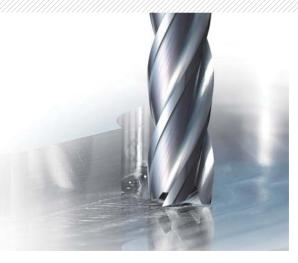
S-Star Endmill

Endmill for Stainless steel machining

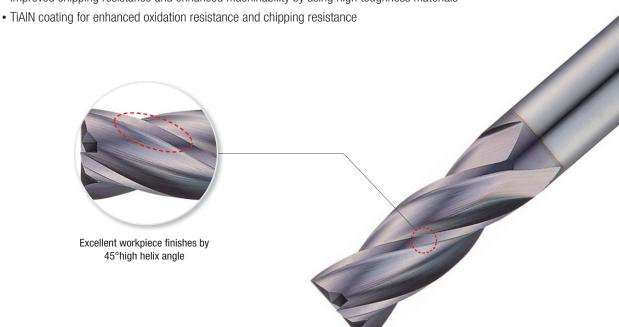
- · Suitable for difficult to cut material such as STS, Ti, Ni and Inconel
- New coatings with high oxidation resistance and surface hardness
- Advanced surface roughness with improved chip emission and deposition resistance

(Features)

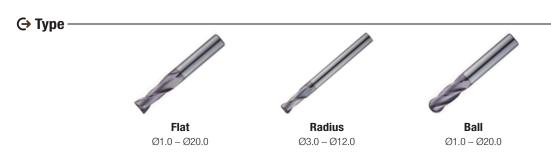
- Stable high speed processing with minimum vibration, unequal index and optimal rake angle
- High processability and low vibration by applying unequal index in cutting edge
- · Minimum vibration through optimized helix angle and R gash, enhanced chip emission with stiffness supplementation
- Reduced friction resistance and improved chip emission by applying new coatings with high surface hardness oxidation resistance



G-Star Endmill


Endmill for Low hardness

- Suitable for low hardness Steel (HRC10~30): Alloy steel, Carbon steel, Pre-harden steel etc.
- General purpose suitable for rough machining, finishing and curved and sloped surfaces

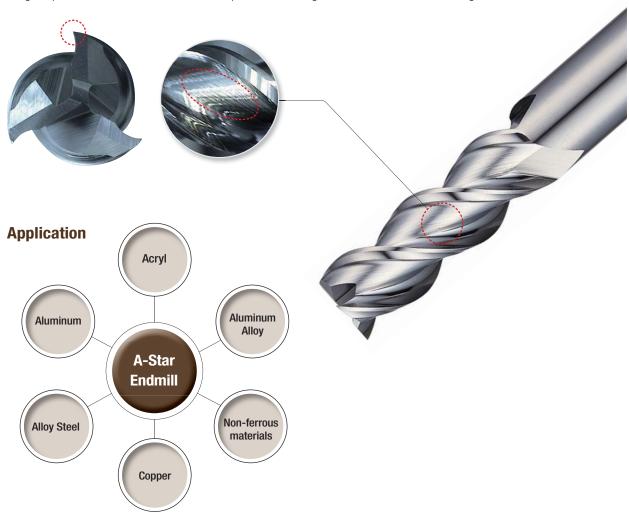

(Features)

- Excellent rake angle and cutting edge considered the characteristics of workpiece
- Improved chipping resistance and enhanced machinability by using high toughness materials

Performance evaluation

Workpiece	Carbon steel (STC3)		
Cutting condition	vc (m/min) = 140, fz (mm/t) = 0.02, ap (mm) = 10.0		
	ae (mm) = 0.4, dry	Total Paris	
Tool	ZE304100P (Diameter = Ø10 mm)		
		[G-Star Endmill]	[Competitor]

A-Star Endmill


Endmill for Aluminum machining

- · Suitable for Aluminum, Aluminum alloy and Non-ferrous materials
- Various specifications in the line such as ball, single flute and roughing etc. for wide range in machining

(Features)

- Sharp cutting edge considered the characteristics of workpiece
- High deposition resistance and enhanced chip emission through the surface of a mirror in the groove

For the safe metalcutting

- Use safety supplies such as protective gloves to prevent possible injury while touching the edge of tools.
- Use safety glasess or safety cover to hedge possible dangers. Inappropriate usage or excessive cutting condition may lead tool's breakage or even the fragment's scattering.
- Clamp the workpiece tightly enough to prevent its movement while its machining
- Properly manage the tool change phase because the inordinately used tool can be easily broken under the excessive cutting load or severe wear, and it may threat the operator's safety.
- Use safety cover because chips evacuated during cutting are hot and sharp and may cause burns and cuts. To remove chips safely, stop machining, put on protective gloves, and use a hook or other tools
- · Prepare for fire prevention measures as the use of the non-water soluble cutting oil may cause fire.
- Use safety cover and other safety supplies because the spare parts or the inserts can be pulled out due to centrifugal force while high speed machining.

Head Office: Holystar B/D, 326, Seocho-daero, Seocho-gu, Seoul, 06633, Republic of Korea Tel: +82-2-522-3181 Fax: +82-2-522-3184, +82-2-3474-4744 Web: www.korloy.com E-mail: sales.khq@korloy.com

Gablonzer Str. 25-27, 61440 Oberursel, Germany Tel: +49-6171-27783-0 Fax: +49-6171-27783-59 E-mail: sales.keg@korloy.com

KORLOY AMERICA

620 Maple Avenue, Torrance, CA 90503, USA Tel: +1-310-782-3800 Toll Free: +1-888-711-0001 Fax: +1-310-782-3885 E-mail: sales.kai@korloy.com

KORLOY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, India Tel: +91-124-439-1790 Fax: +91-124-405-0032 E-mail: sales.kip@korloy.com

A KORLOY TURKIYE

Serifali Mahallesi, Burhan Sokak NO: 34 Dudullu OSB/Umraniye/Istanbul, 34775, Turkiye

(A) KORLOY RUSSIA

Premises 1/3, building 3, house 3, per Kapranova, vn.ter.g. municipal district Presnensky, 123242, Moscow, Russia Tel: +7-495-280-1458 Fax: +7-495-280-1459 E-mail: sales.krc@korloy.com

(a) KORLOY MEXICO

Av. Providencia 1650, Office 910, 7500027

Tel: +55-114-193-3810 Fax: +55-114-193-5837

KORLOY BRASIL

E-mail: sales.kbl@korloy.com KORLOY CHILE

Providencia-Santiago, Chile

Avenida de las Ciencias, No. 3015, Interior 507, Juriquilla Santa Fe, C.P. 76230 Querétaro, Querétaro, Mexico

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasil

Tel: +52-442-193-3600 E-mail: sales.kml@korloy.com

KORLOY FACTORY INDIA

Plot No. 415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, India Tel: +91-124-439-1818 Fax: +91-124-405-0032 E-mail: pro.kim@korloy.com

